Program Assessment and Evaluation

JANIS BUSH,

UT SAN ANTONIO

Me and My
 Program Landscape

- Me
- 40+ years of experience at a Minority Serving Institute
- BS and MS in Biology; PhD Environmental Science and Engineering
- Plants, Butterflies, and other cool stuff!
- UT San Antonio (UTSA)
- 34,864 students
- Hispanic Serving Institute, serving 20,739 Hispanic students (59\%)
- 45\% are First Gen
- MS in Environmental Science
- Demographics like University's

Advancing and Strengthening Science Identity through Systematic

Training (ASSIST) Team Gwen Young Jeffrey Hutchinson Sue Hum Kenneth Walker Amaury Nora Benjamin Tuggle Juliet Ray
President's Distinguished
Achievement Award
for Innovation \& Impact (I^{2})

UEA

Pre-assessment and evaluation

IDENTIFICATION OF PROBLEM

REVIEW OF THE LITERATURE
 REVIEW OF THE LITERATURE

ESTABLISHING THE CONCEPTUAL FRAMEWORK

Steps in Assessment and Evaluation

Steps in Assessment and Evaluation

Step 1 - Define
 Program
 Objectives

1) What are you aiming to achieve?

2) What outcomes are you hoping to see?

Specific

- Increase student engagement
- Increase students' self efficacy
- Improve content learning
- Improve science communication
- Develop leadership skills
- Increase faculty understanding of mentoring URM students

Broad

- Increase science identity
- Increase persistence and graduation

[^0]
Steps in Assessment and Evaluation

Step 2 Establish Assessment Criteria

Steps in Assessment and Evaluation

Step 3

- Map each proposed activity to
 project outcomes and determine assessment instrument
- Example Activity:
- Train faculty and staff on holistic mentoring
- Mapped to improving faculty mentoring of URM

Steps in Assessment and Evaluation

Step 4 - Determine Data Collection Methods and Collect Data

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANT NO. $1806323 . A N Y$ OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE FOUNDATION.

Steps in Assessment and Evaluation

Step 5 - Analyze Data

Steps in Assessment and Evaluation

Step 6 - Interpret Findings

Steps in Assessment and Evaluation

Step 7 - Make Recommendations

Targeted

Steps in Assessment and Evaluation

Step 8 - Develop Action Plan

Steps in Assessment and Evaluation

Step 9 - Implement changes

MODIFYING PROGRAM COMPONENTS

REALLOCATING RESOURCES

REDESIGNING PROCESSES

Steps in Assessment and Evaluation

Monitoring, Communicating and Continuous Improvement

Lessons Learned

FORMING A TEAM WHICH ENSURES ALL ASPECTS OF THE PROGRAM CAN BE ACCOMPLISHED

DESIGNING GRANT ACTIVITIES THAT WILL SUPPORT YOUR OBJECTIVES

CONTINUOUS MONITORING

FINDING WAYS TO IMPLEMENT CHANGES THAT CAN BE SUSTAINABLE

EARNING THE SUPPORT OF THOSE IN CONTROL OF RESOURCES

 AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE FOUNDATION.

Our Project

Problem

- Students changing from thesis to non-thesis
- Lack of communication skills
- Imposture syndrome
- Develop science identity
- Holistic mentoring
- Writing-to-learn pedagogy
- Developing science communication

Objectives

Our conceptual framework

Research science identity is the outgrowth

- Training in science
- Science writing
- Science mentoring
- Close mentoring
- Persistence and graduation

[^1]
Establishing the Conceptual Framework

DEFINE CONCEPTS

ESTABLISH RELATIONSHIPS

SET BOUNDARIES

PROVIDE CONTEXT

GUIDE YOUR RESEARCH DESIGN

[^0]: THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANT NO. $1806323 . A N Y$
 OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S)
 AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE FOUNDATION.

[^1]: THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE NATIONAL SCIENCE FOUNDATION UNDER GRANT NO. $1806323 . A N Y$ OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE FOUNDATION.

