

Program Assessment and Evaluation

JANIS BUSH,
UT SAN ANTONIO

Me and My Program Landscape

- Me
 - 40+ years of experience at a Minority Serving Institute
 - BS and MS in Biology; PhD Environmental Science and Engineering
 - Plants, Butterflies, and other cool stuff!
- UT San Antonio (UTSA)
 - **34,864** students
 - Hispanic Serving Institute, serving 20,739 Hispanic students (59%)
 - 45% are First Gen
- MS in Environmental Science
 - Demographics like University's

Advancing and Strengthening Science Identity through Systematic Training (ASSIST) Team **Gwen Young** Jeffrey Hutchinson Sue Hum Kenneth Walker **Amaury Nora** Benjamin Tuggle **Juliet Ray**

> President's Distinguished Achievement Award for Innovation & Impact (I²)

> > UTSA

Pre-assessment and evaluation

IDENTIFICATION OF PROBLEM

REVIEW OF THE LITERATURE

ESTABLISHING THE CONCEPTUAL FRAMEWORK

Step 1 - Define Program Objectives

- 1) What are you aiming to achieve?
- 2) What outcomes are you hoping to see?

Specific

- Increase student engagement
- Increase students' self efficacy
- Improve content learning
- Improve science communication
- Develop leadership skills
- Increase faculty understanding of mentoring URM students

Broad

- Increase science identity
- Increase persistence and graduation

Step 2
Establish
Assessment
Criteria

Step 3

- Map each proposed activity to project outcomes and determine assessment instrument
- Example Activity:
 - Train faculty and staff on holistic mentoring
 - Mapped to improving faculty mentoring of URM

Step 4 – Determine Data Collection Methods and Collect Data

Step 5 – Analyze Data

Step 6 - Interpret Findings

Step 7 – Make Recommendations

Step 8 – Develop Action Plan

Step 9 – Implement changes

MODIFYING PROGRAM COMPONENTS

REALLOCATING RESOURCES

REDESIGNING PROCESSES

Monitoring, Communicating and Continuous Improvement

Lessons Learned

FORMING A TEAM
WHICH ENSURES ALL
ASPECTS OF THE
PROGRAM CAN BE
ACCOMPLISHED

DESIGNING GRANT
ACTIVITIES THAT
WILL SUPPORT YOUR
OBJECTIVES

CONTINUOUS MONITORING

FINDING WAYS TO
IMPLEMENT
CHANGES THAT CAN
BE SUSTAINABLE

EARNING THE SUPPORT OF THOSE IN CONTROL OF RESOURCES

Our Project

Problem

- Students changing from thesis to non-thesis
- Lack of communication skills
- Imposture syndrome

Objectives

- Develop science identity
 - Holistic mentoring
 - Writing-to-learn pedagogy
 - Developing science communication

Our conceptual framework

Research science identity is the outgrowth

- Training in science
- Science writing
- Science mentoring
- Close mentoring
- Persistence and graduation

Establishing the Conceptual Framework

DEFINE CONCEPTS

ESTABLISH RELATIONSHIPS

SET BOUNDARIES

PROVIDE CONTEXT

GUIDE YOUR
RESEARCH DESIGN